

SQ-SVS

SOLID-STATE VIBRATION SENSOR WITH DUAL ANALOG OUTPUTS

SQ-SVS-HMP

SO-SVS-VMP

FUNCTION

0.005 - 2 g dual axis vibration measurement

APPLICATIONS

- Motor vibration measurement and monitoring
- Vibration alarm triggering
- Fan motors, vehicle motors, machine motors

FEATURES

- 15 % accuracy
- 0.005 g resolution
- 2 g dual axis vibration range
- 1 Hz 500 Hz bandwidth, 1 second averaging period
- Programmable alarm outputs
- Low temperature drift
- Factory calibrated average vibration output
- High reliability solid-state MEMS
- Digital filtration for stable measurement
- Direct PC interface cable

DESCRIPTION

The vibration sensor module performs calibrated averaging (root mean squared) vibration measurement with analog voltage and digital serial outputs. Because acceleration signals are extremely fast by nature, they require high speed sampling and computationally intensive processing to measure. The onboard RMS computation provides a slow moving output that can be easily measured by a low speed system to monitor the average vibration level, greatly simplifying vibration monitoring and measurement.

THEORY OF OPERATION

The vibration sensor uses 2 factory calibrated accelerometers to measure and compute combined RMS acceleration. The calibration and RMS calculations are made by an onboard processor. Additional processing filters spurious acceleration and vibrations to reduce the impact on the resulting output angle.

FUNCTIONAL DIAGRAM

TRANSFER FUNCTION

$$AveragePower(mgRMS) = \frac{Output(V) - Offset(V)}{Sensitivity(V / mgRMS)}$$

RANGE AND SCALE

VIB1 Output

PARAMETER	UNITS	VALUE
Scale Factor	V/mgRMS	0.00253
Offset (0 mgRMS value)	V	0.147
Max (1175 mgRMS value)	V	3.121

VIB2 Output

PARAMETER	UNITS	VALUE
Scale Factor	V/mgRMS	0.00127
Offset (0 mgRMS value)	V	0.147
Max (2350 mgRMS value)	V	3.121

Thresholds

PARAMETER	UNITS	VALUE
Threshold 1	mgRMS	25
Threshold 2	mgRMS	250

^{*} Thresholds can be customized at the factory to suit the application

© SignalQuest, LLC 10 Water St. Tel: 603.448.6266 www.signalquest.com Updated: 2014-05-14 2014 Lebanon, NH 03766 USA Fax 603.218.6426 info@signalquest.com

SQ-SVS

SOLID-STATE VIBRATION SENSOR WITH DUAL ANALOG OUTPUTS

TABLE OF CONTENTS

3
3
4
4
5
6
6
7
7
7
8
9
9
11
11
11

10 Water St.

SQ-SVS

SOLID-STATE VIBRATION SENSOR WITH DUAL ANALOG OUTPUTS

ABSOLUTE MAXIMUM RATINGS

PARAMETER	MIN	TYPICAL	MAX	NOTES
Voltage on +Vcc - without regulator - NR option	0.3 V		4.2 V	with respect to GND
Voltage on +Vcc - with regulator - R option	0.3 V		5.8 V	will respect to GND
Voltage on any input pin			5.8 V	with respect to GND
Peak-to-peak supply noise - without regulator -NR option			50 mV	
Peak-to-peak supply noise - with regulator - R option			200 mV	
Operating temperature	-40 ° C		85 ° C	
Shock survivability			500 g	where 1 g is assumed to be = 9.81 m/s^2
Operating vibration			1.7 g	models available up to 70 g

Note: Exposure to conditions outside of the Absolute Maximum Ratings may damage the device. Prolonged exposure to conditions at the Absolute Maximum Ratings may result in degraded performance of the device over time.

ELECTRICAL CHARACTERISTICS

[Test conditions: 3.3v regulator, 25 ° C unless otherwise specified]

PARAMETER	MIN	TYPICAL	MAX	Notes
Supply voltage - without regulator - NR option	2.9 V		3.5 V	with respect to GND
Supply voltage - with 3.0 volt regulator - 3.0R option	3.2 V		5.8 V	12 V tolerant versions
Supply voltage - with 3.3 volt regulator - 3.3R option	3.5 V		5.8 V	also available. Consult factory.
Supply current	see note	10 mA		models available with average current of 20 uA (0.020 mA).
Output voltage*	0.3 V		$0.9 \times Vcc$	See note below regarding Vcc.
Analog output current			20 μΑ	
Sensitivity*		0.0022 × <i>Vcc</i> / °		See note below regarding Vcc.
Full-scale output range*	0.100 × <i>Vcc</i>		0.895 × <i>Vcc</i>	See note below regarding Vcc.
Input voltage High	2.0 V			
Input voltage Low			0.8 V	

^{*}Note: For the NR model (without onboard regulator), *Vcc* is the voltage supplied to the device. For the 3.0R and 3.0R models (3.0 V or 3.3 V onboard regulators), *Vcc* is 3.0 V or 3.3 V respectively. If your application requires using a 12 V supply, consult factory for 12 V tolerant models.

Updated: 2014-05-14	© SignalQuest, LLC	10 Water St.	Tel: 603.448.6266	www.signalquest.com
Opdated: 2014-03-14	2014	Lebanon, NH 03766 USA	Fax 603.218.6426	info@signalquest.com

SQ-SVS

SOLID-STATE VIBRATION SENSOR WITH DUAL ANALOG OUTPUTS

PERFORMANCE PARAMETERS

PARAMETER	TYPICAL	NOTES
Analog Range Vib1	0 – 1175 mgRMS	
Analog Range Vib2	0 – 2350 mgRMS	
Analog Scale Factor Vib1	0.00253 V/ mgRMS	$1000 \text{ mg} = 1 \text{ g}, 1 \text{ g} = 9.8 \text{ m/s}^2$
Analog Scale Factor Vib2	0.00127 V/ mgRMS	
Analog Offset value	0.147 V	0 mgRMS
Max Output Vib1	3.121 V	1175 mgRMS
Max Output Vib2	3.121 V	2350 mgRMS
Effective sampling resolution	12+ bits	
Acceleration accuracy	+/- 15%	High accuracy models also available

OUTPUT CHARACTERISTICS

PARAMETER	TYPICAL	NOTES
Analog output resolution	8 bit	9 bit actual resolution after PWM reconstruction filter
PWM modulation frequency	5 kHz to 20 kHz	
PWM reconstruction filter bandwidth	10 Hz	Single pole RC
Analog output impedance	10 kΩ	

PRECONFIGURED MODEL COMPARISON

PARAMETER	MODEL 1	MODEL 2	MODEL 3	UNITS	NOTES
Sample rate	1000	1000	1000	Hz	
Vibration bandwidth	1 - 500	10 - 100	10 - 100	Hz	
RMS averaging period	2.0	1.0	0.2	S	
Process noise	3	3	4	mgRMS	Resting state output will be approximately equal to the process noise.
Update rate	2	5	5	mS	Analog update rate and serial packet rate
Warm up time from power on	2.0	2.0	0.2	S	
Analog Range Vib1	0 - 1175	0 - 1175	0 - 1175	mgRMS	$1000 \text{ mg} = 1\text{g}, 1\text{g} = 9.8 \text{ m/s}^2$
Analog Range Vib2	0 - 2350	0 - 2350	0 - 2350	mgRMS	$1000 \text{ mg} = 1\text{g}, 1\text{g} = 9.8 \text{ m/s}^2$
Analog Scale Factor Vib1	0.00253	0.00253	0.0253	V/mgRMS	
Analog Scale Factor Vib2	0.00127	0.00127	0.00127	V/mgRMS	
Analog Offset value	0.147	0.147	0.147	0.147	Output at 0 mgRMS
Max Output Vib1	3.121	3.121	3.121	3.121	
Max Output Vib2	3.121	3.121	3.121	3.121	
Effective sampling resolution	12	12	12	12	
Acceleration accuracy	+/- 15	+/- 15	+/- 15	+/- 15	High accuracy models also available

Updated: 2014-05-14	© SignalQuest, LLC	10 Water St.	Tel: 603.448.6266	www.signalquest.com
	2014	Lebanon, NH 03766 USA	Fax 603.218.6426	info@signalquest.com

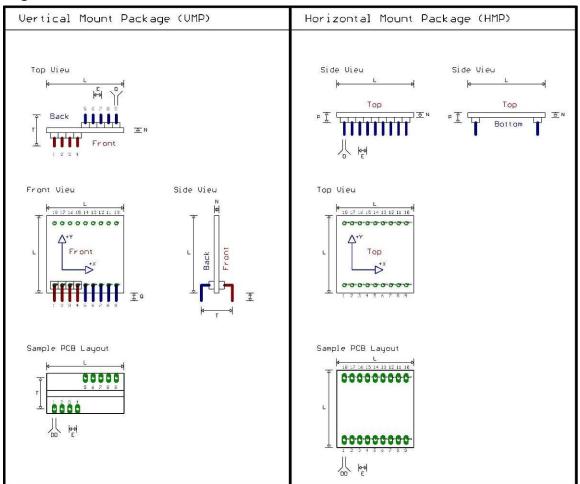
SQ-SVS

SOLID-STATE VIBRATION SENSOR WITH DUAL ANALOG OUTPUTS

PIN CONFIGURATION

Pin	SIGNAL NAME	USAGE
1	Ground	
2	UART Transmit	Digital Output – UART transmit line. Push-pull (not open collector). If not used, solder to open circuit for mechanical stability. Do not connect to GND or current drain will increase.
3	UART Receive	Digital Input – UART receive line. If not used, solder to V+.
4	Baud Select	Digital Input – High (or open) selects high baud rate, Low selects low baud rate. If not used, solder to V+.
5	+Vcc Supply	
6	Vib1	Analog Output – At power-up this signal bounces high until internal filters' initial conditions settle out. If not used, solder to open circuit for mechanical stability. Do not connect to GND or current drain will increase.
7	Vib2	Analog Output – At power-up this signal bounces high until internal filters' initial conditions settle out. If not used, solder to open circuit for mechanical stability. Do not connect to GND or current drain will increase.
8	Logic	Digital Input – High (or open) selects Active High logic output on triggers, Low selects Active Low logic output on triggers. Solder to open circuit for mechanical stability if not used. Do not connect to GND.
9	Noise Estimator	Solder to open circuit for mechanical stability. Do not connect to GND
10	NC	Solder to open circuit for mechanical stability. Do not connect to GND
11	Trigger 1	Digital Output - Transitions logic level when trigger threshold is exceeded. Configure Logic pin to set this as High→Low or Low→High. Solder to open circuit for mechanical stability if not used. Do not connect to GND. Low output impedance.
12	Trigger 2	Digital Output - Transitions logic level when trigger threshold is exceeded. Configure Logic pin to set this as High→Low or Low→High. Solder to open circuit for mechanical stability if not used. Do not connect to GND. Low output impedance.
13	NC	Solder to open circuit for mechanical stability. Do not connect to GND
14	NC	Solder to open circuit for mechanical stability. Do not connect to GND
15	/Reset & Prog 1	Digital Input – Active low reset. Bring low for >10 mS to reset device. If not used, solder to open circuit for mechanical stability. Do not connect to GND. Also used for FLASH programming.
16	Prog 2	Digital Input – If not used, solder to open circuit for mechanical stability. Do not connect to GND. Also used for FLASH programming.
17	NC	Solder to open circuit for mechanical stability. Do not connect to GND
18	NC	Solder to open circuit for mechanical stability. Do not connect to GND

^{*}Note: Grey boxes indicate a function is available only on a custom application basis. NC means "no connection".


Updated: 2014-05-14	© SignalQuest, LLC	10 Water St.	Tel: 603.448.6266	www.signalquest.com
Opdated: 2014-05-14	2014	Lebanon, NH 03766 USA	Fax 603.218.6426	info@signalquest.com

SQ-SVS

SOLID-STATE VIBRATION SENSOR WITH DUAL ANALOG OUTPUTS

SQ-SVS SERIES PACKAGE

DIMENSIONS

DIMENSION	MILLIMETERS	INCHES	DESCRIPTION	NOTES
T	10.16	0.40	N/A	Pin center to center
L	25.40	1.00	Side length	
Е	2.54	0.10	Pitch	Pin center to center
D	0.80	0.032	Pin diameter	
DD	1.00	0.040	Hole diameter	
N	1.63	0.064	PCB thickness	
S	20.32	0.80	Pin row spacing	Not shown on drawing

Updated: 2014-05-14	© SignalQuest, LLC	10 Water St.	Tel: 603.448.6266	www.signalquest.com
Opdated: 2014-05-14	2014	Lebanon, NH 03766 USA	Fax 603.218.6426	info@signalquest.com

SQ-SVS

SOLID-STATE VIBRATION SENSOR WITH DUAL ANALOG OUTPUTS

DESIGN, LAYOUT, AND ASSEMBLY CONSIDERATIONS

- 1. Since the device is a subassembly of surface mount components, it is not suitable for automatic assembly or wave soldering.
- 2. Hand soldering of pins or SMT pads is specified for 3 seconds at 218 °C.
- 3. Pins labeled NC (no connect) should be soldered to open connection pads / pins for mechanical stability.
- 4. The designer should test the device's output voltage through its entire desired angle range during prototyping to ensure that it is working properly in the application.
- 5. The device can be mounted vertically or horizontally, but the direction must be oriented correctly to measure the desired angles.
- 6. It is recommended that pins designated "future" be connected for forward compatibility.

DIGITAL SERIAL INTERFACE

UART FORMAT: 8-N-1

8 data bits, 1 stop bit, no parity, no flow control: 115,200 baud. (Available in 19,200 baud by special order, with vibration output only.)

One byte commands can be sent from the host to control various functions of the device. The following commands can be sent to the devices via the UART. The data encoding is HEX, not ASCII.

Interrogate

0x01 (Interrogate Mode command)

The device echoes 1 data packet [10 bytes] after receiving the Interrogate Mode command. The maximum delay between a request and the data packet response is 1 Update Period. The host should not issue a new Interrogate Mode command until it has received the previous data packet.

Stream

0x02 (Stream Mode command)

The device begins sending data packets [10 bytes] continuously at the given Update Rate. The maximum delay between a request and the first data packet response is 1 Update Period.

Reset

0x83 (Reset command)

The device initiates its Power-on Reset sequence (see Power-on Reset below).

RESET SOURCES

Power-on Reset and RST pin

When the device is disconnected from power it reverts to its default settings in Interrogate Mode. It transmits 1 data packet [10 bytes] after its Warm Up time to indicate that measurements are stabilized.

Updated: 2014-05-14	© SignalQuest, LLC	10 Water St.	Tel: 603.448.6266	www.signalquest.com
Opuateu. 2014-05-14	2014	Lebanon, NH 03766 USA	Fax 603.218.6426	info@signalquest.com

SQ-SVS

SOLID-STATE VIBRATION SENSOR WITH DUAL ANALOG OUTPUTS

SERIAL PACKET FORMAT

Updated: 2014-05-14

	Вуте	NAME	NOTES	
Header	0	Sync byte 1	0xFE	
Неа	1	Sync byte 2	0xFE	
	2	Vib 1 (high byte)	Output_Value = Measured_Vibration(mgRMS).	
	3	Vib 1 (low byte)	For example, a measured vibration of 1275 mgRMS resul in an output value of 1275.	
Payload	4	X Accel (high byte)		
Payl	5	X Accel (low byte)	Format: 16-bit, signed integer. Output_Value = Measured_Acceleration(mg).	
	6	Y Accel (high byte)	For example, a measured acceleration of 1.275 g results in an output value of 1275.	
	7	Y Accel (low byte)	1	
Checksum	8	Checksum (high)	Format: 16-bit, unsigned integer sum of the 16 bit unsigned	
Checi	9	Checksum (low)	integer payload values. The checksum does not include the two sync bytes (0xFE 0xFE).	

SQ-SVS

SOLID-STATE VIBRATION SENSOR WITH DUAL ANALOG OUTPUTS

ORDERING GUIDE

OPTIONS	CODE	OPTION	Notes	
ıred	-1	Model 1	1 – 500 Hz bandwidth. See Preconfigured Model Comparison above for more details.	
Preconfigured model	-2	Model 2	10 – 100 Hz bandwidth. See Preconfigured Model Comparison above for more details.	
r or	-NR	No onboard regulator	Special order only	
Power regulator option	-3.0R	3.0 V onboard regulator	Special order only	
I re	-3.3R	3.3 V onboard regulator	Standard version (stock)	
ıge	-HMP	Horizontal mount package	Fits into standard 0.100" grid circuit board	
Pin package option	-VMP	Vertical mount package	Available for SQ-SI family only	
Pin	-NP	No pins installed	Fits inside potting box enclosures (SQ-ENCL-1)	
Trigger	-T1[value]	Trigger 1	Specify value in mgRMS i.e. 25 for 25 mgRMS	
Trig	-T2[value]	Trigger 2	Specify value in mgRMS i.e. 250 for 250 mgRMS	
RoHS (lead free)	-E	RoHS complaint, lead free		
Other	-Custom	Customer-specific requirements	Please contact SignalQuest if you require an option not listed in this table. For example, various baud rates, setting times, update rates and voltage regulator options may be available on request.	

EXAMPLE PART NUMBER

SQ-SVS-1-3.3R-HMP

ACCESSORIES

PART NUMBER	DESCRIPTION	
SQ-USB2-TTL	 Self-powering USB cable used to directly connect device to a PC. 	
	 Installs a "virtual COM port" on host PC (i.e. COM 3). 	
	 Converts PC voltage levels to device voltage levels and supplies power. 	
	 Allows multiple devices to be easily connected to a single computer. 	
	 Compatible with SignalVIEW real time display and data logging software. 	

Updated: 2014-05-14	© SignalQuest, LLC 2014	Lebanon, NH 03766 USA	Fax 603.218.6426	info@signalquest.com
	© SignalOuest, LLC	10 Water St.	Tel: 603.448.6266	www.signalquest.com

Updated: 2014-05-14

DATASHEET

SQ-SVS

SOLID-STATE VIBRATION SENSOR WITH DUAL ANALOG OUTPUTS

	 DLL provide for custom application development in VC++, C#, or VB etc.
SQ-RS232-TTL	 Same as above cable, but external power is required for devices without –LP option.
SQ-ENCL-1	 Potting box enclosure. Potting box enclosure. Fits models without pins installed (-NP option).

SQ-SVS

SOLID-STATE VIBRATION SENSOR WITH DUAL ANALOG OUTPUTS

LIMITATIONS AND WARNINGS

Life safety

This product is not designed for use in life support and/or safety equipment where malfunction of the product can reasonably be expected to result in personal injury or death. Buyer uses this product in such applications at Buyer's own risk and agrees to defend, indemnify, and hold harmless SignalQuest, LLC from any and all damages, claims, suits, or expenses resulting from such misuse.

TESTING

The performance of each system is verified through build-time testing. Each system is tested before and after factory calibration to ensure reliable performance.

SYSTEM INTEGRATION TESTING

Thorough testing should be carried out prior to product release to insure system integration has not introduced unforeseen problems. The system integrator assumes the ultimate responsibility for the safety of the target application.

NOTICE

Updated: 2014-05-14

Information furnished by SignalQuest, Inc is believed to be accurate and reliable. However, this document may contain ERRORS and OMMISIONS. Accordingly, the design engineer should use this document as a reference rather than a strict design guideline and should perform thorough testing of any product that incorporates this or any other SignalQuest product. No responsibility is assumed by SignalQuest, LLC for this use of this information, or for any infringements of patents or other rights of third parties that may result from its use. Specifications are subject to change without notice. No license is granted by implication or otherwise under any patent or patent rights of SignalQuest, LLC Trademarks and registered trademarks are the property of their respective companies.

FURTHER INFORMATION

For pricing, delivery, and ordering information, please contact SignalQuest at (603) 448-6266 For updates on this and other documents, visit our website at www.signalquest.com